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ABSTRACT
Recent studies have shown great promise in applying graph neu-
ral networks for multivariate time series forecasting, where the
interactions of time series are described as a graph structure and
the variables are represented as the graph nodes. Along this line,
existing methods usually assume that the graph structure (or the ad-
jacencymatrix), which determines the aggregationmanner of graph
neural network, is fixed either by definition or self-learning. How-
ever, the interactions of variables can be dynamic and evolutionary
in real-world scenarios. Furthermore, the interactions of time series
are quite different if they are observed at different time scales. To
equip the graph neural network with a flexible and practical graph
structure, in this paper, we investigate how to model the evolution-
ary and multi-scale interactions of time series. In particular, we first
provide a hierarchical graph structure cooperated with the dilated
convolution to capture the scale-specific correlations among time
series. Then, a series of adjacency matrices are constructed under
a recurrent manner to represent the evolving correlations at each
layer. Moreover, a unified neural network is provided to integrate
the components above to get the final prediction. In this way, we
can capture the pair-wise correlations and temporal dependency
simultaneously. Finally, experiments on both single-step and multi-
step forecasting tasks demonstrate the superiority of our method
over the state-of-the-art approaches.
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1 INTRODUCTION
Time series forecasting is a ubiquitous problem in practical sce-
narios. By modeling the evolution of the states or events in the
future, it enables decision-making and plays a vital role in numer-
ous domains, such as traffic [12], healthcare [9], and finance [31].
The tremendous value of this problem is also proved by the long
research history. In the early time, Auto-Regressive (AR) model and
its variants are the most popular methods in classical statistical
domain due to the efficiency and perfect mathematical properties.
However, they are mainly applied in univariate forecasting prob-
lem and assume the linear dependency among variables. With the
rapid growth of data volume, it is difficult for AR to deal with more
complicated conditions due to the relatively low expressiveness.

Multivariate time series forecasting explores the correlation
among variables. Recent years have witnessed that a number of
deep learning methods are applied in this domain to handle non-
linear dependency. LSTNet [11] and TPA-LSTM [18] are the first
two works toward multivariate time series forecasting based on the
deep learning framework. To be more specific, they both combine
the convolution neural network (CNN) and recurrent neural net-
work (RNN) to capture the intra- and inter-time-series dependencies
respectively. However, it is difficult for the global aggregation of
CNN to pair-wise correlations among variables precisely. To solve
this problem, graph neural network (GNN), the generalization of
convolutional neural network to non-Euclidean space, comes to the
stage. By treating the variables as nodes, the connections among
them could be represented by edges properly. Li et al. [12] first
combined the GNN with the gated recurrent unit to give the predic-
tion and introduced a hand-craft adjacency matrix to describe the
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Figure 1: The possible interactions of variables in multivari-
ate time series forecasting. Most existing works utilize the
fixed correlation (𝐴0). However, the graph structure is evolv-
ing (𝐴1 and 𝐴2) and varies in different observation scales
(𝐴3).

correlations based on the distance between nodes. Wu et al. [24]
argued that the predefined graph structure could not reflect the
genuine connections, and they constructed a self-learned adjacency
matrix during the training process. Shang et al. [17] simplified the
bilevel program problem and sampled the discrete graph structure
from the Bernoulli distribution. How to design the proper graph
structure to model the correlations among the time series gradually
becomes the key to solving this problem.

Though remarkable success has been achieved by generalizing
GNN to multivariate time series forecasting domain, there are still
several important problems that remain to be further addressed:
1) The graph structure is evolving over time. As it is shown in the
Figure 1, the purple line and the blue line fluctuate together from 𝑡1
to 𝑡2, but they separate and head the different direction from 𝑡3 to
𝑡4. While most existing works maintain a fixed and static adjacency
matrix from the beginning to the end, which could not handle such
complicated condition obviously. 2) The graph structure varies on
different observation scales. The correlation between variables in
short-term view could differ from it in long-term. For example, in
the finance domain, two stocks might go up and down together
under the influence of a new policy released by the government
in a short term view, but they will part ways definitely in the long
term if one company behind is thriving and the other is about to go
bankrupt. The correlations between time series at different scales
are seldom considered, and it is also obvious that a fixed adjacency
matrix could not deal with it. Therefore, we argue that existing
works have not explored and unleashed the full potential of the
graph neural network for this problem.

Whenwe propose to take a further step and address the two prob-
lems above, three challenges are faced: 1) The evolving graph struc-
ture is not only influenced by the current input but also strongly
correlated to itself at the previous time step. The recurrent construc-
tion manner has been rarely discussed. 2) Generating the graph
structure for each time step to model the evolution through exist-
ing self-learned methods would bring too many parameters, which

results in difficulty for model convergence. 3) It is a nontrivial en-
deavor to capture the scale-specific graph structure among nodes
due to the excess information and messy relationship behind it.

To cope with above challenges, we propose a novel deep learn-
ing framework named Evolving Multi-Scale Graph Neural Network
(ESG). Specifically, a hierarchical architecture is proposed to capture
the scale-specific inter-and intra-time-series correlations simulta-
neously cooperated with the dilated convolution module. Next,
instead of maintaining a fixed graph structure all the time, for each
scale, we constructed a series of adjacency matrices to model the
evolving correlations with gated recurrent unit. Last but not least,
the final prediction is made by a unified forecasting model which
fuses the multi-scale representations. The main contributions are
summarized as follows:

• This paper studies how to improve the GNN-based multivari-
ate time series forecasting methods by constructing multiple
evolutionary graph structures to model the interactions of
time series. Most of the existing methods are founded on
a fixed graph structure, which are not sufficient to capture
the evolutionary interactions of time series, and not able to
observe the interactions with different time scales either.

• Correspondingly, a temporal convolution module and an
evolving structure learner are particularly designed to learn
the multi-scale representations of time series and a series of
recurrent graph structures respectively.

• Experiments on real-world data sets not only validate the
effectiveness of the proposed method, but also illustrate how
the interactions of time series evolve over time, and how to
model the interactions of time series with multiple observa-
tional scales.

It is worth mentioning that the end intention of the paper is
to improve the accuracy of time series forecasting, rather than
discovering the ground-truth graph structure and inferring the
causality. Either the hand-crafted or self-learned graph structure
might contain several causal information, but they serve more likely
as the external factors which help to extract global and precise
signals for time series. We also argue that there doesn’t exist a
perfect and standard measurement for learned graph structure
but the forecasting accuracy. For example, the genuine topological
structure of the road network doesn’t exploit the full potentialities
of the traffic prediction problem. Additionally, the learned graph
structure provides a healthy and robust version for a more accurate
prediction if the "ground truth" graph exists [17].

2 PRELIMINARY
This section gives a detailed definition of the multivariate time
series forecasting problem.

Definition 2.1 (Graph Neural Network). We denote the relation-
ship among all variables via a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸

indicate the set of nodes and edges respectively. For an edge 𝜀 ∈ 𝐸,
it could be represented by an ordered tuple (𝑣𝑖 , 𝑣 𝑗 ) which indicates
the edge points from node 𝑣𝑖 to node 𝑣 𝑗 . N𝑖 indicates the neigh-
bors of node 𝑣𝑖 , and all nodes connected with 𝑣𝑖 are included. The
connectivity among the whole graph is represented by the adja-
cency matrix 𝑨 ∈ R𝑁×𝑁 with 𝑨𝑖 𝑗 ≠ 0 iff (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and 𝑨𝑖 𝑗 = 0
iff (𝑣𝑖 , 𝑣 𝑗 ) ∉ 𝐸, where 𝑁 is the total number of nodes. In order
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Figure 2: The framework of ESG.

to capture the correlation between variables, the graph theory is
generalized to the multivariate time series analysis domain [23].
With denoting the variables as the nodes in graph, it is much more
efficient and effective to model the correlations between variables
via the adjacency matrix 𝑨.

Definition 2.2 (Problem Formalization). The time series with 𝑁

variables are denoted as X = {𝑿 (1) ,𝑿 (2) , · · · ,𝑿 (𝑇 ) } with X ∈
R𝑁×𝑇×𝐶 , and 𝑿 (𝑡 ) indicates the values of the variables at time step
𝑡 . 𝐶 is the feature dimension of a single variable. The forecasting
problem takes the historical observations to predict the states of
variables in the future. According to the number of output steps, the
problem setting usually falls into two mainstream, single-step, and
multi-step forecasting. Given a long historical time series and a look-
back window with the fixed-length 𝑃 , the single-step forecasting
proposes to obtain the future value 𝑿 (𝑡+𝑄) at time step 𝑄 . In the
multi-step forecasting, the historical information with fixed length
𝑃 is also taken into consideration, but the predicting target turns
to a sequence of future values 𝑿 (𝑡+1:𝑡+𝑄) :

𝑿 (𝑡−𝑃+1:𝑡 ) F1−−→ 𝑿 (𝑡+𝑄) ,

𝑿 (𝑡−𝑃+1:𝑡 ) F2−−→ 𝑿 (𝑡+1:𝑡+𝑄) ,
(1)

where the F1 and F2 denote the mapping function that we intend
to parameterize for the single-step forecasting and multi-step fore-
casting respectively.

3 METHODOLOGY
In this section, the proposed framework and all components will
be stated elaborately.

3.1 Overview
Here we introduce the overview architecture of Evolving Multi-
Scare Graph Neural Network which is shown in Figure 2. The
multivariate time series 𝑿 is first fed into a fully connected layer to
obtain the initial representation 𝒁 (1) , and the stacked multi-scale
extractors follow. Each extractor is made up of three components.
A temporal convolution module F𝑡 is utilized to capture the multi-
scale representations on the temporal dimension. The output of
this part 𝝃 is fed into the evolving graph structure learner F𝑎 and

the graph convolution module F𝑔 , which is defined as:

𝝃 (𝑙) = F (𝑙)
𝑡 (𝒁 (𝑙) ),

A(𝑙) = F (𝑙)
𝑎 (𝝃 (𝑙) ),

𝒁 ′ (𝑙+1)
= F (𝑙)

𝑔 (𝝃 (𝑙) ,A(𝑙) ),

(2)

where 𝒁 (𝑙) is the input of 𝑙-th layer. Residual connection is em-
ployed to deliver the initial input to the next layer directly. There-
fore, 𝒁 (𝑙+1) is obtained by adding 𝒁 ′ (𝑙+1) and 𝒁 (𝑙) up. It is worth
mentioning that the three modules all vary from layer to layer,
which helps to extract multi-scale information. The output of the
evolving graph structure learner is a series of adjacency matrices
A(𝑙) which are fed into the graph convolution module F𝑔 . Skip
connection is utilized to deliver the information to the final output:

�̂� = F𝑜 (𝑿 , 𝝃 (1) , 𝝃 (2) , ..., 𝝃 (𝐿) ,𝒁 (𝐿+1) ), (3)

where 𝐿 is the total number of the multi-scale extractor layers,
and F𝑜 is a simple predictor which could be implemented by a
fully connected layer. Including the graph structure, ESG is trained
in an end-to-end manner. In the rest of this section, the evolving
graph structure learner, temporal convolution module, and graph
convolution module will be elaborated respectively.

3.2 Learning Evolving Graph Structure
The correlations among multivariate time series do not stay un-
changed all the time in the practical scenario. However, the dynamic
correlations are seldom considered due to the complex dependency
and high computational cost.We design anEvolvingGraph Structure
Learner (EGL) to extract the dynamic correlations among variables
to address this issue. The detail architecture is shown in Figure 3.
This module both considers the dependency with the current input
values and the graph structure at last time step, which could be
formulated under a recurrent manner:

𝑨(𝑡 ) = F𝑒 (𝑨(𝑡−1) , 𝝃 (𝑡 ) ), (4)

where the 𝑨(𝑡 ) ∈ R𝑁×𝑁 denotes the adjacency matrix which de-
scribes the evolving correlations at time step 𝑡 , 𝝃 (𝑡 ) denotes the
node features, and F𝑒 is the evolving correlations extracting func-
tion. It is worthmentioning that we leave out the superscript 𝑙 which
indicates the layer number in this equation and the following of this
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Figure 3: The detailed architecture of evolving graph struc-
ture learner (EGL).

subsection for simplicity. However, in the practical scenarios, the
graph structure varies smoothly over time rather than drastically.
Most of the time, adjacent timestamps follow the time consistency
and have similar or even identical estimations of the relationship.
Thus, we assume that the graph structures in our model remain un-
changed in a time interval while having evolutionary relationships
between adjacent time intervals. Additionally, directly parameter-
izing 𝑁 × 𝑁 adjacency matrix and the mapping function F𝑒 bring
a great deal of computation cost. To address this issue, we denote
that the nodes possess an evolving representation 𝜶 which also
varies over time. And the evolving graph structure could be derived
from the evolving node representations.

Here we utilize GRU, a simple but powerful variant of recur-
rent neural network, to model the dynamic of evolving represen-
tations. Node features 𝝃 ∈ R𝑇×𝑁×𝐶𝝃 are divided into several seg-
ments along the temporal dimension. An aggregator is applied to
the features of each segment to obtain an input sequence of GRU
[𝜸 (1) ,𝜸 (2) , ...,𝜸 (𝑚) , ...,𝜸 (𝑀) ]:

𝜸 (𝑚) = 𝐴𝐺𝐺 (𝝃 ( (𝑚−1)𝑑+1:𝑚𝑑) ) ∈ R𝑁×𝐶𝝃 , (5)

where 𝑑 and𝑀 are the time interval and the total number of seg-
ments. 𝐴𝐺𝐺 indicates the aggregator which could be implemented
by the mean operation. Denoting 𝜶 (𝑚) ∈ R𝑁×𝐶𝑒 as the hidden
state, the updating processing of GRU is defined as:

𝒓 (𝑚) = 𝜎 (𝑾𝑟 [𝜸 (𝑚) ,𝜶 (𝑚−1) ] + 𝒃𝑟 ),

𝒖 (𝑚) = 𝜎 (𝑾𝑢 [𝜸 (𝑚) ,𝜶 (𝑚−1) ] + 𝒃𝑢 ),

𝒐 (𝑚) = 𝜇 (𝑾𝑜 [𝜸 (𝑚) , (𝒓 (𝑚) ⊙ 𝜶 (𝑚−1) )] + 𝒃𝑜 ),

𝜶 (𝑚) = 𝒖 (𝑚) ⊙ 𝜶 (𝑚−1) + (1 − 𝒖 (𝑚) ) ⊙ 𝒐 (𝑚) ,

(6)

where 𝒓 (𝑚) and 𝒖 (𝑚) denote the reset gate and update gate, ⊙ is
the Hardmard product, and𝑾𝑟 ,𝑾𝑢 ,𝑾𝑜 are the learning parameters.
𝜎 is the sigmoid function, and 𝜇 is the tangent hyperbolic function.

In the practical scenario, some intrinsic features of time series
help to forecast a lot. We propose to integrate those useful static
node representations 𝜶𝑠 with a fully connected layer as the initial

hidden state of GRU:

𝜶 (0) = MLP𝑠 (𝜶𝑠 ) . (7)

The instability of the training process brought by the cold start
problem is also handled. However, sometimes it is not convenient
to obtain the external factors. Then we turn to the rich information
which the multivariate time series themselves possess. A node
feature extractor is adopted to extract static representations 𝜶𝑠 ∈
R𝑁×𝐶𝑠 from the whole training set𝑿∗ without external knowledge:

𝜶𝑠,𝑖 = F𝑠 (𝑿∗
𝑖 ), (8)

where𝜶𝑠,𝑖 and𝑿∗
𝑖
indicate the static representation and the training

set data for node 𝑖 respectively, and𝐶𝑠 is the number of static feature
dimensions. The node feature extractor F𝑠 could be implemented
as many deep network structures, such as multilayer perceptron,
recurrent neural network, and will be optimized during the end-to-
end training process for the whole model. Additionally, the inputs
to the node feature extractor are not limited to the time series
data in the training set. In case the external knowledge about the
attributes of nodes is given, we could introduce them to form a
more comprehensive static node representation.

After the evolving node representations are generated, we con-
catenate the two nodes representations and apply a multilayer
perceptron to derive the graph structure. Additionally, we learn a
mask to control the output information ratio:

�̂�(𝑚)
𝑖 𝑗

= MLP𝑒 (𝜶 (𝑚)
𝑖

,𝜶 (𝑚)
𝑗

),

𝑴 (𝑚)
𝑖 𝑗

= MLP𝑚 (𝜶 (𝑚)
𝑖

,𝜶 (𝑚)
𝑗

),

𝑨(𝑚) = �̂�(𝑚) ⊙ 𝜎 (𝑴 (𝑚) ),

(9)

where �̂�(𝑚)
𝑖 𝑗

, 𝑴 (𝑚)
𝑖 𝑗

denote the values of learned graph structure
and the mask at the row 𝑖 column 𝑗 , 𝜎 denotes the sigmoid function.
𝑨(𝑚) is the final evolving graph structure at the𝑚-th time interval.

3.3 Temporal Convolution Module
The temporal convolution module consists of two dilated inception
layers to extract the multi-scale representations [23]. Time series
could possess an extreme long-term dependency in the practical
scenario. We introduce the dilation factor which controls the skip-
ping distance to the standard causal convolution. Therefore, the
receptive field could expand exponentially with the increase of the
layer depth. For the node 𝑖 , the dilated convolution is defined as:

𝒁𝑖 ★𝒇1×𝑘 (𝑡) =
𝑘−1∑︁
𝜏=0

𝒇1×𝑘 (𝜏)𝒁𝑖 (𝑡 − 𝑠 × 𝜏), (10)

where 𝑠 is the dilation factor, 𝒁𝑖 indicates the input sequence for a
specific layer of node 𝑖 , and the superscript 𝑙 which represents the
number of layer is left out in this subsection for simplicity. 𝒇1×𝑘 is
the 1D convolution filter kernel with the size 𝑘 .

However, the challenge still remains that it is hard to capture
both the short-term and long-term patterns simultaneously by a
single filter. That the dependencies are entangled with others leads
to the hard situation to discover the valuable signals. To address
this problem, multiple filters with different sizes are adopted to
extract temporal patterns with various ranges. Thus, the dilated
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inception layer is defined as:

𝝃 ′𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝒁𝑖 ★𝒇1×𝑘1 ,𝒁𝑖 ★𝒇1×𝑘2 , ...,𝒁𝑖 ★𝒇1×𝑘𝜔 ), (11)

where [𝑘1, 𝑘2, ..., 𝑘𝜔 ] are 𝜔 different filter sizes, and the outputs of
different filters are truncated to the same length according to the
largest filter and concatenated across the channel dimension. The
gating mechanism is also utilized to control the amount of informa-
tion passing to the next module. Specifically, we feed the outputs
of two dilated inception layers 𝝃 ′1,𝑖 , 𝝃

′
2,𝑖 through two different acti-

vation functions, and then make element-wise multiplication:

𝝃𝑖 = 𝜎 (𝝃 ′1,𝑖 ) ⊙ 𝜇 (𝝃 ′2,𝑖 ), (12)

where 𝜎 denotes the sigmoid function, 𝜇 denotes the tangent hyper-
bolic function and ⊙ is the Hadamard product. 𝝃𝑖 is the output of the
temporal convolution module of node 𝑖 , and it will be fed into the
evolving graph structure learner and the graph convolution module.
By stacking multiple layers, the temporal convolution module cap-
tures temporal patterns at different temporal levels. For example,
at the bottom layer, the module extracts short-term information
while at the top layer the module tackles long-term information.

3.4 Evolving Graph Convolution Module
Applying the graph neural network in the multivariate time series
forecasting domain has achieved great success. However, the depen-
dency among variables not only evolves over time but also varies
on different time scales, which is difficult for the fixed adjacency
matrix to describe such correlations. In addition, the evolving pat-
terns of the graph structure are also not the same at different time
scales. To tackle the above problems, we utilize the scale-specific
evolving graph structure learner to discover correlations among
variables for the specific scale level. Formally, the output of the 𝑙-th
temporal convolution layer 𝝃 (𝑙) is fed into the 𝑙-th EGL proposed
in Section 3.2 to generate a series of adjacency matrices as follows:

[𝑨(𝑙,1) ,𝑨(𝑙,2) , ...,𝑨(𝑙,𝑀 (𝑙 ) ) ] = F (𝑙)
𝑎 (𝝃 (𝑙) , 𝑑 (𝑙) ), (13)

where A(𝑙) = [𝑨(𝑙,1) ,𝑨(𝑙,2) , ...,𝑨(𝑙,𝑀 (𝑙 ) ) ], 𝑑 (𝑙) is the time interval,
and𝑀 (𝑙) determines the number of adjacency matrices at 𝑙-th layer.

The graph convolution F𝑔 at each scale is implemented by the
mix-hop propagation which consists of two steps, the informa-
tion propagation, and the information selection. The former one is
defined as:

𝑯 (𝜓 ) = 𝛽𝝃 + (1 − 𝛽)𝑨𝑯 (𝜓−1) , (14)
where 𝜉 indicates the input of graph convolution layer, 𝑯 (𝜓 ) is
the representation at hop 𝜓 and we set 𝑯 (0) = 𝝃 . 𝛽 is the hyper-
parameter which controls the ratio between the original input and
the information from different hops. Themulti-level representations
are attached with different weights adaptively:

𝒁 ′ =
Ψ∑︁

𝜓=0
𝑯 (𝜓 )𝑾(𝜓 ) , (15)

where Ψ indicates the depth of propagation, and we also leave out
the superscripts 𝑙 and𝑚 for simplicity in Equation (13) and (14). The
information propagation step propagates node information along
with the given graph structure recursively, and retain a proportion
of the node’s original states during the propagation process so that
the propagated node states can both preserve locality and explore

the deeper neighborhood, which also relieves the problem of over-
smoothing to a certain extent. 𝑾(𝜓 ) is introduced as the feature
selector to lay more importance to the hop which contains the
crucial signals.

Finally, at 𝑙-th layer, the representation in the𝑚-th time interval
will be fed into mix-hop propagation layer with its corresponding
adjacency matrix 𝑨(𝑙,𝑚) , which is defined as:

𝒁 ′ (𝑙,𝑚)
= F (𝑙)

𝑔 (𝝃 (𝑙,(𝑚−1)𝑑 (𝑙 )+1:𝑚𝑑 (𝑙 ) ) ,𝑨(𝑙,𝑚) ), (16)

where F (𝑙)
𝑔 indicates the mix-hop propagation at layer 𝑙 . 𝒁 ′ (𝑙,𝑚) is

the output of graph convolution at𝑚-th segment, 𝑙-th layer, and
the 𝒁 ′ (𝑙) is the output set of all segments at 𝑙-th layer, 𝒁 ′ (𝑙) =

[𝒁 ′ (𝑙,1) ,𝒁 ′ (𝑙,2) , ...,𝒁 ′ (𝑙,𝑀 (𝑙 ) ) ].

4 EXPERIMENTS
In this section, we verify the superiority of our model through
extensive and rigorous experiments.

4.1 Datasets & Setup
We conduct detailed experiments on six popular real-world datasets1.
Brief statistical information is listed in Table 1. We utilize two
groups of evaluation metrics for the different forecasting tasks. For
the single-step prediction, Root Relative Squared Error (RSE) and
Empirical Correlation Coefficient (CORR) are selected [23]. The
multi-step prediction tasks are evaluated by Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Empirical Correlation
Coefficient (CORR) [27]. The lower value indicates better perfor-
mance for all evaluation metrics except CORR. More datasets and
setup details are stated in Appendix A.1 and A.3.

Table 1: The overall information for datasets.

Datasets Nodes Timesteps Granularity Task Types Partition
Solar-Energy 137 52560 10min

Single-step 6/2/2Electricity 321 26304 1hour
Exchange Rate 8 7588 1day

Wind 28 10957 1day
NYC-Bike 250 4368 30min Multi-step 7/1.5/1.5NYC-Taxi 266 4368 30min

4.2 Baselines
We utilize two groups of baselines for single-step and multi-step
forecasting respectively. Both empirical statistic methods and pop-
ular deep learning models are selected carefully. The detailed infor-
mation of baselines is shown in Appendix A.2.

Single-step forecasting. We select 8 time-series forecasting
methods. Two empirical statistical methods are Auto-Regressive
(AR), Gaussian Process (GP) [15]. Six deep learning models contain
VARMLP [29], RNN-GRU, LSTNet [11], TPA-LSTM [18], MTGNN
[23], and StemGNN [4].

Multi-step forecasting. 8 popular baselines are selected includ-
ing XGBoost [5], DCRNN [12], STGCN [28], STG2Seq [1], STSGCN
[19], MTGNN [23], CCRNN [27], and GTS [17].

1Codes and datasets are available at https://github.com/LiuZH-19/ESG

https://github.com/LiuZH-19/ESG
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Table 2: Comparison with baselines on single-step forecasting.

Dataset Metrics Solar-Energy Electricity Exchange Rate Wind
3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE 0.2435 0.3790 0.5911 0.8699 0.0995 0.1035 0.1050 0.1054 0.0228 0.0279 0.0353 0.0445 0.7161 0.7572 0.8076 0.9371
CORR 0.9710 0.9263 0.8107 0.5314 0.8845 0.8632 0.8591 0.8595 0.9734 0.9656 0.9526 0.9357 0.6459 0.6046 0.5560 0.4633

GP RSE 0.2259 0.3286 0.5200 0.7973 0.1500 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.0580 0.6689 0.6761 0.6772 0.6819
CORR 0.9751 0.9448 0.8518 0.5971 0.8670 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278 0.6964 0.6877 0.6846 0.6781

VARMLP RSE 0.1922 0.2679 0.4244 0.6841 0.1393 0.1620 0.1557 0.1274 0.0265 0.0394 0.0407 0.0578 0.7356 0.7769 0.8071 0.8334
CORR 0.9829 0.9655 0.9058 0.7149 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.8280 0.7675 0.6415 0.5973 0.5724 0.5470

RNN-GRU RSE 0.1932 0.2628 0.4163 0.4852 0.1102 0.1144 0.1183 0.1295 0.0192 0.0264 0.0408 0.0626 0.6131 0.6479 0.6573 0.6381
CORR 0.9823 0.9675 0.9150 0.8823 0.8597 0.8623 0.8472 0.8651 0.9786 0.9712 0.9531 0.9223 0.7403 0.7089 0.6956 0.7173

LSTNet RSE 0.1843 0.2559 0.3254 0.4643 0.0864 0.0931 0.1007 0.1007 0.0226 0.0280 0.0356 0.0449 0.6079 0.6262 0.6279 0.6257
CORR 0.9843 0.9690 0.9467 0.8870 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354 0.7436 0.7275 0.7249 0.7284

TPA-LSTM RSE 0.1803 0.2347 0.3234 0.4389 0.0823 0.0916 0.0964 0.1006 0.0174 0.0241 0.0341 0.0444 0.6093 0.6292 0.6290 0.6335
CORR 0.9850 0.9742 0.9487 0.9081 0.9439 0.9337 0.9250 0.9133 0.9790 0.9709 0.9564 0.9381 0.7433 0.7240 0.7235 0.7202

MTGNN RSE 0.1778 0.2348 0.3109 0.4270 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456 0.6204 0.6346 0.6363 0.6426
CORR 0.9852 0.9726 0.9509 0.9031 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372 0.7337 0.7209 0.7164 0.7134

StemGNN RSE 0.1839 0.2612 0.3564 0.4768 0.0799 0.0909 0.0989 0.1019 0.0506 0.0674 0.0676 0.0685 0.6197 0.6358 0.6243 0.6379
CORR 0.9841 0.9679 0.9395 0.8740 0.9490 0.9397 0.9342 0.9209 0.8871 0.8703 0.8499 0.8738 0.7282 0.7202 0.7228 0.7130

ESG RSE 0.1708 0.2278 0.3073 0.4101 0.0718 0.0844 0.0898 0.0962 0.0181 0.0246 0.0345 0.0468 0.6118 0.6250 0.6272 0.6298
CORR 0.9865 0.9743 0.9519 0.9100 0.9494 0.9372 0.9321 0.9279 0.9792 0.9717 0.9564 0.9392 0.7417 0.7281 0.7258 0.7225

Table 3: Comparison with baselines on multi-step forecasting.

Dataset Method Horizon 3 Horizon 6 Horizon 12 All
RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR

NYC-Bike

XGBoost 3.7048 2.2167 0.5232 4.1747 2.5511 0.3614 4.3925 2.7091 0.2894 4.0494 2.4689 0.4107
DCRNN 3.0172 1.7917 0.6967 3.2369 1.9078 0.6609 3.5100 2.0325 0.6196 3.2274 1.8973 0.6601
STGCN 2.6256 1.6456 0.7539 3.8368 2.2827 0.6282 4.3713 2.6052 0.4521 3.7829 2.2076 0.5933
STG2Seq 3.4669 2.0409 0.5999 3.9145 2.2630 0.5079 4.2373 2.5163 0.4443 3.7843 2.2055 0.5413
STSGCN 2.7328 1.6973 0.7386 2.8861 1.7416 0.7179 3.0548 1.8224 0.6903 2.8846 1.7538 0.7126
MTGNN 2.5962 1.5668 0.7626 2.7588 1.6525 0.7447 3.3068 1.7892 0.6931 2.7791 1.6595 0.7353
CCRNN 2.6538 1.6565 0.7534 2.7561 1.7061 0.7411 2.9436 1.8040 0.7029 2.7674 1.7133 0.7333
GTS 2.7628 1.7159 0.7248 2.9287 1.7769 0.7007 3.1649 1.8905 0.6622 2.9258 1.7798 0.6985
ESG 2.5529 1.5483 0.7638 2.6484 1.6026 0.7511 2.8778 1.7173 0.7152 2.6727 1.6129 0.7449

NYC-Taxi

XGBoost 15.0372 8.4121 0.6862 21.3395 11.8491 0.4433 26.7073 15.7165 0.0452 21.1994 11.6806 0.4416
DCRNN 12.3223 7.0655 0.7591 15.1599 8.6639 0.6634 17.8194 10.5095 0.5395 14.8318 8.4835 0.6671
STGCN 11.2175 6.1441 0.8090 14.0360 7.6797 0.7470 18.7168 10.2211 0.5922 14.6473 7.8435 0.7257
STG2Seq 14.0756 7.7274 0.7258 19.1757 10.5066 0.5429 24.5691 14.3603 0.2855 19.2077 10.4925 0.5389
STSGCN 10.5381 5.6448 0.8370 10.8444 5.7634 0.8302 11.9443 6.3185 0.7988 10.9692 5.8299 0.8242
MTGNN 10.3394 5.6775 0.8374 10.7534 5.8168 0.8312 12.5164 6.5285 0.7972 10.9472 5.9192 0.8249
CCRNN 9.3033 5.4586 0.8529 9.7794 5.6362 0.8438 10.9585 6.1416 0.8186 9.8744 5.6636 0.8416
GTS 10.7796 6.2337 0.7974 13.0215 7.3251 0.7299 14.9906 8.5328 0.6524 12.7511 7.2095 0.7348
ESG 8.5745 4.8750 0.8656 9.0125 5.0500 0.8592 9.7857 5.4019 0.8450 8.9759 5.0344 0.8592

4.3 Main Results
Table 2 and Table 3 summarize the single-step and multi-step fore-
casting evaluation results. In summary, ESG achieves state-of-the-
art performance in both two tasks. The best results are highlighted
in bold font.

4.3.1 Single-step Forecasting. In this task, we compare ESG with
other multivariate time series models. Table 2 shows the detailed
experimental results on the single-step forecasting. Excellent per-
formance of our model is achieved on Solar-Energy, Electricity.
Especially on Solar-Energy dataset, ESG achieves 3.94%, 3.96% im-
provements compared with the state-of-the-art methods on the
horizons of 3, 24 in terms of RSE. On this dataset, the excellent
results are also achieved by MTGNN which utilizes the self-learned

adjacency matrix to describe the correlations between time se-
ries. The impact of weather on the power generation is shared
between the plants in the same areas, which offers the static graph
a strong local relationship. However, ESG still makes a significant
improvement. This is because the evolving correlations between
multivariate time series are well captured in Solar-Energy dataset.
On the Exchange-rate and Wind datasets, the results of ESG are not
as good as results on the first two datasets, but ESG still achieves
optimal performance on more than half of the metrics. This is pos-
sibly due to the smaller graph size and fewer training examples of
Exchange-rate and Wind datasets.

4.3.2 Multi-step Forecasting. In this task, several spatio-temporal
methods are chosen in the traffic prediction domain. Table 3 shows
the detailed experimental results on the multi-step forecasting. The
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performance on time steps 3, 6, 12, and the average of all horizons
is compared. In general, our ESG achieves state-of-the-art results
regarding all the metrics for all horizons on both two datasets. In
particular, ESG lowers down RMSE by 7.8%, 7.8%, 10.7% and MAE
by 10.7%, 10.4%, 12.0% over the horizons of 3, 6, 12 on the NYC-
taxi data. The improvement of ESG increases with the growth of
the forecasting horizon, indicating our model ability in long-term
forecasting, which is inherently more uncertain and difficult than
short-term forecasting. We can observe further phenomena from
the table. XGBoost which doesn’t explore the correlations between
time series obtains the worst results. DCRNN, STGCN, and STG2Seq
are all graph convolution network-based forecasting models, which
outperform XGBoost. However, the graph structures they utilize
in GCN are fixed and hand-crafted, which is not flexible and repre-
sentative enough to describe the correlations. MTGNN, CCRNN,
and GTS adopt an adaptive static graph structure learning manner,
which contributes to their significant improvement over previous
methods. However, being lack of extracting evolving correlations
restricts their further improvements.

4.4 Ablation Study
To validate the effectiveness of the key components, we conduct a
ablation study on NYC-Bike. We name variants of ESG as follows:

• Static Graph Only: Removing the evolving graph struc-
ture, utilizing the static graph constructed by static node
representation only.

• w/o Scale-Specific: Generating a series of evolving graph
structures from the raw input data only, which is later used
in each mix-hop propagation layer regardless of changes in
correlations over different time scales.

• Same Pattern of Evolution: Sharing parameters of evolv-
ing graph structure learners at different scales.

We repeat each experiment 10 times and report the average value
and the standard deviation in Table 4. More details are shown in
Appendix A.4. We could make a conclusion that all components
contribute to the final state-of-the-art results to a certain extent.
Firstly, removing the evolving graph structure learner still obtains a
competitive result, which indicates that the robust and informative
self-learned graph structure could help a lot in multivariate time
series forecasting. However, only using the static graph, without
considering the evolution of the graph structure, brings a large
standard deviation to the results. Secondly, using dynamic graphs
regardless of the difference of scales reaches the worst results. This
is because the graph structure varies at different time scales. In
addition, the dynamic graphs generated in this common manner
cannot correspond to the information processed by the temporal
convolution module in the time dimension. The fact verifies the
necessity and effectiveness of using the scale-specific evolving
graph structure learner. The comparison between the third variant
and ESG proves the correctness of the hypothesis that the evolution
patterns of graph structure follows vary at different time scales.

To further investigate the importance of multi-scale information
fusion, we evaluate the performance of ESG variants which only
employ one scale information, and the results are visualized as
the barplot shown in Figure 4. In the experiments, scale 0 denotes
using raw input. Scale 1, scale 2, and scale 3 use the output of the

Table 4: Ablation Study.

Method RMSE MAE CORR
Static Graph Only 2.7439±0.0438 1.6302±0.0176 0.7388±0.0050
w/o Scale-Specific 2.8102±0.0433 1.6663±0.0150 0.7259±0.0047

Same Pattern of Evolution 2.7274±0.0177 1.6296±0.0036 0.7402±0.0024
ESG 2.6727±0.0117 1.6129±0.0086 0.7449±0.0051

Figure 4: Utilizing the information at different scales.

first, second, and third temporal convolution module respectively,
which represent different time scales from the short to long term.
Scale 4 uses the output of the last graph convolution module. ESG
outperforms the methods using only one scale information by a
large margin, which indicates the superiority of fusing the multi-
scale representations to make the final prediction. Interestingly,
scale 2 achieves the second-best results. It suggests that the impor-
tance of different scales varies. Furthermore, the contribution to
the forecasting doesn’t weigh more as the scale level increases.

4.5 Study of Evolving Graph Structure
To further verify the effectiveness of evolving graph structure
learner, we select four stations with number 77, 141, 166, and 217
on April 8𝑡ℎ, 2016 to conduct a practical case study. As it is shown
in Figure 5 (a), 𝑨(2,1) ,𝑨(2,2) , ..., and 𝑨(2,6) are the adjacency ma-
trices at scale 2, which are visualized as heat map. The bluer grid
indicates a bigger weight. Figure 5 (b) and Figure 5 (c) display the
practical locations and the raw time series curves. Considering that
numerous variables contain the genuine unidirectional relationship
behind, we have not constrained the symmetry when generating
the adjacency matrices. Taking station 166 as an example, several
interesting phenomena are observed. 1) Before 16:30 in Figure 5
(c), we could observe that station 166, the green line, and station
141, the orange line, have a strong correlation with each other, and
they go up and down together. However, the situation changes
after 16:30, station 141 remains stable but station 166 fluctuates
dramatically. The fact that the correlations evolve from high to
low is well captured by the adjacency matrices. As it is shown in
Figure 5 (a), the value at row 166 and column 141 gets smaller and
smaller over time. 2) As we could observe in Figure 5 (a), the value
along the orange dashed line goes deep in the beginning, and then
it turns light after 𝑨(2,4) , which indicates the correlation between
station 166 and 217 rises in the beginning and falls in the end. This
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Figure 5: (a) A series of adjacency matrices in scale 2 on the NYC-Bike dataset, which reveals a strong evolving pattern. (b) The
location of node 77, 141, 166 and 217 on the map. (c) The raw time series curves on 12 time steps, which corresponds to the
adjacency matrices shown in (a) and (d). (d) Several adjacency matrices on scale 1 and 3.

information is also consistent with the fact shown in Figure 5 (c).
The yellow line has a different tendency from the green line in
the first. Then they go up together from 16:30 to 18:30 and end
up separating. The two phenomena above provide strong support
for demonstrating the effectiveness of evolving graph structure
learner. Additionally, though station 217 is closest to 166 in phys-
ical distance, the correlation between them is small before 16:30,
which reflects the limitations of hand-crafted graph structure for
its inflexibility and inaccuracy.

We also verify the graph structure which captures the the cor-
relations at different observation scales. The total layer 𝐿 for the
NYC-Bike dataset is 3. All adjacency matrices in scale 2 are shown
in Figure 5 (a), and we random select one in scale 1. Due to the
sequence reducing led by the dilated convolution, the scale 3 only
contain a single adjacency matrix which is also chosen. 5 (d) display
the two adjacency matrices, 𝑨(1,6) and 𝑨(3,1) , in scale 1 and 3. We
could observe that the values in the adjacency matrix at the scale 1
tend to be highly polarized, which indicates the short-term depen-
dency of the stations is more likely to differ from others. However,
at the last scale, the more average values in the adjacency matrix
𝑨(3,1) clarify that the 4 time series possess the same pattern from
the long-term view. The two case studies above offer us a strong
support to verify that the evolving and multi-scale correlations
among multivariate time series are well captured by ESG.

5 RELATEDWORK
In this section, we review the related work from two perspectives,
time series forecasting, and graph neural network.

5.1 Time Series Forecasting
Time series forecasting has attracted numerous researchers to dig
into it. According to the number of variables that are taken as the
observation, this enduring topic usually falls into two mainstreams,

univariate time series, and multivariate time series. The former
feeds the variables one by one to a single model under the assump-
tion that all variables of the time series share the same temporal
pattern. In the statistical domain, autoregressive integrated mov-
ing average (ARIMA) [2] is one of the most popular methods for
its flexibility and excellent mathematical properties. Recent years
have witnessed the rapid growth of deep learning, and a num-
ber of researchers analyze the time series respectively under this
framework. FC-LSTM [20] combines the fully connected layer with
LSTM to make prediction. N-BEATS [14] utilizes deeply stacked
fully-connected layers cooperated with the residual links, and the
simple architecture pays back a great number of desired properties
such as being interpretable and fast to train.

On the other side, multivariate time series forecasting takes the
whole variables as an entity, and researchers devote themselves to
exploring the correlation among the different time series. LSTNet
[11] and TPA-LSTM [18] combined the convolution neural network
and recurrent neural network to handle this problem in the deep
learning framework. In the spatio-temporal prediction, the subfield
of multivariate time series analysis, the similar model architecture is
also preferred with treating the transportation demand of the whole
city as several grids [26, 30]. DeepGLO [16] decomposes the time
series as the combination of the basis via matrix factorization (MF).
TLAE [13] followed this line and proposed a temporal auto-encoder.
However, it is difficult for the methods above to capture the pair-
wise correlation between variables precisely. To solve this problem,
MTGNN [23] generalized graph neural network to multivariate
time series forecasting via a self-learned adjacency matrix.

5.2 Graph Neural Network
Recent years have witnessed the rapid development of graph neural
network. Bruna et al. [3] first extended the convolution network
to graph-based data. The following work could be roughly divided
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into two categories [22], spectral-based methods and spatial-based
methods. The former one takes the graph convolution as the low-
pass filter to remove high frequency information from the signals
[6]. Along this line, Xu et al. [25] proved the expressiveness of
graph neural networks is equal to Weisfeiler-Lehman (WL) graph
isomorphism test. The spatial-based methods follow the message
passing rule and aggregate the information from neighbors [8, 10].

With the rapid development of the GNN’s theory, the flexible
architecture and strong generalization ability make it widely ap-
plied in numerous domains. For example, in spatio-temporal data
prediction, especially in traffic forecasting problem, the natural
topological structure of the road network makes GNN achieve the
remarkable performance [7, 12, 27, 28]. Yu et al. [28] first combined
the GNN with the 1D convolution neural network and constructed
the adjacency matrix by the distance between nodes. Guo et al. [7]
aggregated the recent, daily, weekly representations to give the fi-
nal forecasting. However, the evolving and multi-scale correlations
among multivariate time series are seldom captured.

6 CONCLUSION
In this paper, we proposed a novel multivariate time series forecast-
ing model named ESG. In particular, an evolving graph structure
learner is proposed to construct a series of adjacency matrices that
not only receive the information from current input but also main-
tain the hidden states from the historical graph structure. Based on
this, a hierarchical architecture is proposed to capture the multi-
scale inter-and intra-time-series correlations simultaneously. Fi-
nally, a unified forecasting framework integrates the components
above to give the final prediction. The extensive experiments con-
ducted on real-world datasets demonstrate the superiority of the
proposed methods over the baselines. This research provides a new
perspective to the correlation modeling on current multivariate
time series forecasting. In the future, the evolving graph structure
will be explored in more scenarios.
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A APPENDIX
More details are displayed in this section.

A.1 Dataset and Metrics
We conduct detailed experiments on two groups of datasets, 4 for
the single-step, and 2 for the multi-step task. Now more details of
each dataset and the evaluation metrics are shown in the following.

A.1.1 Single-Step Forecasting. 4 datasets are conducted for this
task, covering the energy, and exchange rates of countries.

• Solar-Energy: This dataset [11] from National Renewable
Energy Laboratory contains the solar power production
records of 137PV plants in Alabama State in 2007.

• Electricity: This dataset [11] which is published by National
Renewable Energy Laboratory contains the hourly electricity
consumption of 321 clients from 2012 to 2014.

• Exchange Rate: This dataset [11] contains daily exchange
rates of eight countries from 1990 to 2016. The countries are
Australia, British, Canada, Switzerland, China, Japan, New
Zealand, and Singapore.

• Wind: This dataset [21] contains the hourly energy potential
estimates of an area from 1986 to 2015.

The length of the look-back window 𝑃 is 168. For each future hori-
zon (𝑄 = 3, 6, 12, 24), themodel is trained independently. The feature
dimension 𝐶 is 1. The performance of models is evaluated by the
Root Relative Squared Error (RSE, defined in Equation (19)) and
Empirical Correlation Coefficient (CORR, defined in Equation (20)).
The 𝜌 indicates the total number of samples, and 𝑁 is the number
of nodes. 𝒀 and�̂� indicate the ground truth and forecasting value.
�̄� and ¯̂𝒀𝑛 represent the mean values.

A.1.2 Multi-Step Forecasting. Two real-world traffic datasets pub-
lished by New York OpenData are chosen for this task.

• NYC-Bike: This dataset [27] collects the sharing bike de-
mand of the residents’ daily usage at 250 bike stations in
New York from April 1𝑠𝑡 , 2016 to June 30𝑡ℎ, 2016.

• NYC-Taxi: This dataset [27] contains the taxi demand data
in New York from April 1𝑠𝑡 , 2016 to June 30𝑡ℎ, 2016.

The look-back window is 12 (6 hours), and we predict the future
values for the next 12 time steps (6 hours). The feature dimension
𝐶 is 2, i.e., the demand of pick-up and drop-off. The performance of
models is evaluated by Root Mean Squared Error (RMSE, defined in
Equation (17)), MeanAbsolute Error (MAE, defined in Equation (18))
and Empirical Correlation Coefficient (CORR, defined in Equation
(20)).

𝑅𝑀𝑆𝐸 =

√√√ 𝜌∑︁
𝑡 ′=0

(𝒀 (𝑡 ′) − �̂� (𝑡 ′) )2 . (17)

𝑀𝐴𝐸 =

𝜌∑︁
𝑡 ′=0

|𝒀 (𝑡 ′) − �̂� (𝑡 ′) |. (18)

𝑅𝑆𝐸 =

√︃∑𝜌

𝑡 ′=0 (𝒀 (𝑡 ′) − �̂� (𝑡 ′) )2√︃∑𝜌

𝑡 ′=0 (𝒀 (𝑡 ′) − �̄� )2
. (19)

𝐶𝑂𝑅𝑅 =
1
𝑁

𝑁∑︁
𝑛=1

∑𝜌

𝑡 ′=0 (�̂�
(𝑡 ′)
𝑛 − ¯̂𝒀𝑛) (𝒀 (𝑡 ′)

𝑛 − �̄�𝑛)√︃∑𝜌

𝑡 ′=0 (�̂�
(𝑡 ′)
𝑛 − ¯̂𝒀𝑛)2 (𝒀 (𝑡 ′)

𝑛 − �̄�𝑛)2
. (20)

A.2 Baselines
Two groups of baselines are chosen for single-step and multi-step
forecasting respectively. All key hyper-parameters are well-tuned
to ensure their performance. Each experiment is run 10 times and
the average value is presented.

A.2.1 Single-step forecasting. For the single-step forecasting task,
we select 8 baselines covering classical statistic methods and recent
deep neural networks.

• AR: Auto-Regression model capture the linear correlations
among time series.

• GP: Gaussian Process [15] is employed for time series mod-
eling.

• VARMLP: VARMLP [29] is a hybrid methodology that com-
bines both VAR and MLP models.

• RNN-GRU: The gated recurrent unit is employed for time
series modeling.

• LSTNet: LSTNet [11] combines the CNN with RNN for mul-
tivariate time series forecasting.

• TPA-LSTM: TPA-LSTM [18] utilizes attention mechanism
and RNN.

• MTGNN: MTGNN [23] employs an adaptive adjacency ma-
trix to describe the correlation among time series.

• StemGNN: StemGNN [4] employs Fourier Transform to
discover the hidden patterns of time series.

A.2.2 Multi-step forecasting. We choose 8 competitive and repre-
sentative baselines for the multi-step forecasting task.

• XGBoost: A powerful machine learning method based on
gradient boosting tree [5].

• DCRNN: Diffusion convolutioal recurrent neural network
[12] first utilizes a hand-craft adjacency matrix to describe
the correlations among time series.

• STGCN: Sptaio-temporal graph convolutional network [28]
integrates the graph convolution with 1D convolution neural
network.

• STG2Seq: Spatio-temporal graph to sequence model [1] cap-
tures the long-term and short-term temporal dependency
respectively.

• STSGCN: Spatial-temporal synchronous graph convolutional
network [19] constructs a 3D graph convolution kernel.

• MTGNN: This method [23] capture the correlations among
variables via a self-learned adjacency matrix.

• CCRNN: Coupled layer-wise convolutional recurrent neural
network [27] explores the hierarchical graph convolution
for multivariate time series.

• GTS: Graph for Time Series [17] combines a discrete graph
structure learner with recurrent neural network.

A.3 Experimental Setup
The models is implemented by the Pytorch. All the experiments
are conducted on an Ubuntu machine equipped with two Intel(R)
Xeon(R) CPU E5-2667 v4 @ 3.20GHz with 8 physical cores, and the
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Table 5: Ablation Study.

Method Horizon 3 Horizon 6 Horizon 12 All
RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR

Static Graph Only 2.6217 1.5686 0.7600 2.7451 1.6327 0.7401 2.9315 1.7254 0.7098 2.7439 1.6302 0.7388
w/o Scale-specific 2.6504 1.5872 0.7530 2.7907 1.6623 0.7304 3.0320 1.7781 0.6940 2.8102 1.6663 0.7259

Same Pattern of Evolution 2.5911 1.5593 0.7612 2.7179 1.6263 0.7443 2.9224 1.7297 0.7114 2.7274 1.6296 0.7402
ESG 2.5529 1.5483 0.7638 2.6484 1.6026 0.7511 2.8778 1.7173 0.7152 2.6727 1.6129 0.7449

GPU is NVIDIA TITAN Xp, armed with 12 GB of GDDR5X memory
running at over 11 Gbps. We repeat the experiment 10 times and
report the average value of evaluation metrics. The model is trained
by the Adam optimizer with gradient clip 5. Learning rate is chosen
from {0.01, 0.005, 0.001, 0.0005, 0.0001} by grid search. Dropout with
0.3 is applied after each temporal convolution module. Layernorm
is applied after each graph convolution module. The depth of the
mix-hop propagation layer Ψ is set to 2. The retain ratio 𝛽 from the
mix-hop propagation layer is set to 0.05. The dimension of static
node representation 𝐶𝑠 is 40. Other hyper-parameters are reported
according to different tasks.

A.3.1 Single-step forecasting. We stack 5 multi-scale extractors
with a sequence of time intervals 𝑑 (𝑙) , 31, 31, 21, 14, 1. In tempo-
ral convolution module, the dilation factor for each layer grows
exponentially at a rate of 2 and four filter sizes are used, i.e., 𝑘1=2,
𝑘2=3, 𝑘3=6, and 𝑘4=7. The output channels of temporal convolution
modules 𝐶𝝃 and graph convolution modules 𝐶𝑍 both are 16. The
skip connection layers are 1 ×𝑇 (𝑙) standard convolutions, where
𝑇 (𝑙) is the sequence length of the inputs to the 𝑙-th skip connection
layer, which all have 32 output channels. In the output module,
The first layer has 64 output channels and the second layer has 1

output channel. For the Solar- Energy, the batch size is 16. For the
Electricity and Exchange Rate, the batch size is 4. For the Wind, the
batch size is 32. The dimension of evolving node representation 𝐶𝑒
is set to 20 for the Solar-Energy, Electricity, and Wind, while set to
16 for the Exchange Rate.

A.3.2 Multi-step forecasting. We stack 3 multi-scale extractors
with a sequence of time intervals 𝑑 (𝑙) , 1, 1, 1. In temporal convo-
lution module, the dilation exponential factor is 1 and two filter
sizes are used, i.e., 𝑘1=2, 𝑘2=6. The output channels of temporal
convolution modules 𝐶𝝃 and graph convolution modules 𝐶𝑍 both
are 32. The skip connection layers are 1 ×𝑇 (𝑙) standard convolu-
tions, which all have 64 output channels. In the output module, The
first layer has 128 output channels and the second layer has 12×2
output channels. The batch size is 16 and the dimension of evolving
node representation 𝐶𝑒 is set to 20.

A.4 Extra Experiment Result
We conduct a detailed ablation study on NYC-Bike dataset. As
shown in Table 5, ESG achieves the best results on the average
value, as well as on horizon 3, 6, 12.
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